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Abstract
The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate 
the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardio-
vascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were 
performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-
media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) 
were measured at baseline. Two ML-based algorithms—random forest (RF) and random survival forest (RSF) were used for 
CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate 
analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event 
prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque char-
acteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p < 0.0001), TPA (OR = 1.61, p < 0.0001), and IPN 
(OR = 2.78, p < 0.0001)]. IPN alone reported significant CV event prediction (hazard ratio = 1.24, p < 0.0001). CAD predic-
tion using the RF algorithm reported an improvement in AUC by ~ 3% over the univariate analysis with IPN alone (0.97 vs. 
0.94, p < 0.0001). Cardiovascular event prediction using RSF demonstrated an improvement in the c-index by ~ 17.8% over 
the Cox-based model (0.86 vs. 0.73). Carotid imaging phenotypes and IPN were associated with CAD and CV events. The 
ML-based system is superior to the conventional statistically-derived approaches for CAD prediction and survival analysis.

Keywords  Coronary artery disease · Focused carotid ultrasound · Intraplaque neovascularization · Machine learning · Risk 
prediction · And cardiovascular event prediction

Introduction

Cardiovascular (CV) disease is a major cause of global mor-
tality and morbidity [1]. Vascular ultrasound may serve as a 
useful screening tool to detect atherosclerotic plaque, a cause 
of the cardiovascular disease (CVD) [2, 3]. Specifically, 
carotid intima-media thickness (cIMT), maximum plaque 
height (MPH), and total plaque area (TPA) are considered 
surrogate markers of coronary artery disease (CAD) and 
are associated with CV outcomes [3–6]. Recently, a plaque 
progression and instability metric called intraplaque neovas-
cularization (IPN) were reported as a significant and inde-
pendent predictor of CAD and CV events [7].

At present, the association between carotid ultrasound-
based image phenotypes and CAD is established using 
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conventional statistical regression-based approaches that 
assume a linear association between baseline risk predic-
tors and the cardiovascular outcomes [8, 9]. This assumption 
oversimplifies the complex nonlinear patterns available in 
the input risk predictors [8, 9]. Furthermore, regression-
based approaches handle a limited set of risk predictors, 
therefore, when a large number of risk predictors are 
included in their model, such approaches fail to provide 
accurate risk assessment and event prediction [8, 10, 11]. 
The field of artificial intelligence (AI) now provides a poten-
tial solution to overcome the problem of conventional sta-
tistical analysis. The utility of AI has been established in 
various medical imaging applications [12] and, in particular, 
is emerging for a carotid ultrasound for CVD risk assessment 
[13]. An AI entity can learn from the inter-relationships of 
risk predictors and their association with the endpoints to 
create an offline model, which can then be used in an online 
paradigm for predicting future CV events using the test risk 
predictors.

Machine-learning (ML) is the component of AI, which 
helps in overcoming the limitations of conventional statis-
tical approaches. Previous studies have demonstrated the 
superiority of ML-based algorithms in predicting CVD risk 
over conventional statistically derived risk calculators [11, 
13–16]. Furthermore, while handling censored datasets for 
survival analysis, ML-based algorithms have shown prom-
ising results with high discrimination between desired CV 
outcomes [17, 18]. Therefore, in this study, we investigated 

whether the ML-based algorithms can provide a better pre-
diction of CAD and future CV events compared with a con-
ventional statistical model. Figure 1 depicts the global view 
of the proposed ML-based CAD prediction system.

Methods

Study population

We previously published details of the derivation study and 
conventional statistical analysis prior to the application of 
ML methods [7, 19, 20]. This prospective study recruited 
459 consecutive participants between December 2016 and 
June 2018 from the Kingston General Hospital’s Cardiac 
Catheterization Laboratory, Ontario, Canada [7]. The inclu-
sion criteria were: (i) age ≥ 18 years; (ii) referred for clini-
cally indicated angiography for CAD assessment; and (iii) 
the absence of clinical contraindication to angiography. 
Exclusion criteria were: (i) previous carotid endarterectomy; 
(ii) allergy to perflutren; (iii) known or suspected cardiac 
shunt; (iv) previous percutaneous coronary intervention 
(≥ 1 week) or coronary artery bypass graft surgery; and (v) 
prior myocardial infarction, stroke, or transient ischemic 
attack (≥ 1 week). Baseline information was collected from 
all participants, including medical and surgical history, and 
vitals. Cholesterol values could not be obtained prior to angi-
ography due to timing and personnel constraints. Written 

Fig. 1   The global architecture of the ML-based CAD prediction system. CAD, coronary artery disease; ML, machine learning. System courtesy 
of AtheroPoint™, Roseville, CA, USA
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informed consent was obtained from all participants. This 
study conforms to the ethical guidelines of the 1975 Dec-
laration of Helsinki, as reflected in a priori approval by the 
Queen’s University Health Sciences and affiliated Teaching 
Hospitals Research Ethics Board, Queens, Ontario, Canada.

Coronary artery evaluation using angiography 
as a gold standard

In the derivation study, coronary angiograms were recorded 
using the GE system 2000 (GE Healthcare) [19, 21] and 
scored by expert researchers blinded to the clinical fea-
tures of participants. Stenosis in the left main left anterior 
descending, circumflex, and right coronary arteries were 
recorded as 0: no or minimal disease (0–19% narrowing), 
1: mild disease (20–49% narrowing), 2: moderate disease 
(50–69% narrowing), and severe disease (≥ 70% narrowing 
within any segment of the main branches of the coronary 
artery or ≥ 50% in the left main coronary artery) [19]. Coro-
nary angiography is generally used as a gold standard to 
determine the CAD [22] This study used coronary angiog-
raphy scores to determine the significant CAD (≥ 50% steno-
sis), making a binary endpoint. In another similar approach, 
coronary angiography was used as the gold standard in an 
AI framework for the detection of myocardial ischemia. [23].

Focused carotid B mode ultrasound imaging

A focused carotid B-mode ultrasound (cBUS) was per-
formed on all participants using a vascular ultrasound scan-
ner (Vivid E9 Ultrasound System, GE Healthcare) equipped 
with a 9L-D linear array transducer (2.4–10 MHz) [21]. 
Ultrasound scanning was performed by an experienced 
imaging technician within 24 h of coronary angiography. All 
images were stored in the digital image and communications 
in medicine (DICOM) format and analyzed offline. Image 
phenotypes namely, cIMT, MPH, and TPA were measured 

using EchoPAC software (GE Healthcare). MPH is the max-
imum distance between the lumen-intima media interfaces 
when comparing both sides of the neck [19, 21]. MPH was 
manually quantified in the bulb or internal carotid artery 
region using caliper function shown by two stars (Fig. 2). 
Plaque areas were traced manually in the carotid bifurca-
tion and the proximal 1 cm (or 10 mm) of the internal and 
external carotid arteries of both sides. All the plaque areas 
on both sides were accumulated to give the TPA. The pres-
ence of carotid plaque was defined as the focal structure 
encroaching into the lumen with plaque height > 1.5 mm or 
50% of the surrounding intima-media thickness [3, 24].

Contrast enhance carotid ultrasound imaging

IPN is another indicator of plaque progression and plaque 
instability that can be measured using contrast-enhanced 
carotid ultrasound (CEUS) [25]. In this derivation study, 
IPN was determined as a rapid movement of contrast micro-
bubbles from the adventitial side to the carotid plaque core 
and graded as 0: no visible microbubbles in carotid plaque, 
1: the presence of minimal microbubbles confined towards 
the adventitial side of the plaque, and 3: the presence of 
microbubbles throughout the plaque [25]. The average IPN 
grade of both sides of the neck was computed and a sin-
gle overall score was provided per patient. Our recent study 
demonstrated a high predictive value of IPN while detecting 
significant CAD and future CV events [7].

Follow‑up for CV events

Follow-up from all study participants was taken for a period 
of 30 days or until they experienced one of the following 
CV events: coronary revascularization (i.e. percutaneous 
coronary intervention, coronary artery bypass surgery), 
heart failure, nonfatal myocardial infarction, stroke, or car-
diac death. Participants with the acute coronary syndrome 

Fig. 2   Sample focused B-mode 
carotid ultrasound scans show-
ing maximum plaque height 
(MPH). Example 1-top row (A 
and B) with MPH of 2.85 mm 
and example 2-bottom row (C 
and D) with MPH of 5.51 mm
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at the time of coronary angiography were excluded from the 
follow-up analysis to reduce bias. In addition, participants 
with coronary revascularization within 7 days of the origi-
nal angiogram were excluded from the analysis to prevent 
planned revascularization therapy from being assessed.

Machine learning for CAD prediction

The challenge of CAD prediction is translated into the char-
acterization of the CAD. This characterization has been 
directly linked to AI or data mining in recent years and our 
group has attempted this in the non-CAD area [26–29]. 
These AI systems are an extension arm of computer-aided 
designs [30]. Such a design for a generalized ML-based 
CAD prediction system is divided into two parts (Fig. 3): 
(i) an offline model generation [31] and (ii) an online model 

application [32]. The data-partitioning block follows a leave-
one-out cross-validation protocol [33–35] (supplementary 
material, section S1) separating the input dataset into two 
sets—(a) training dataset and (b) testing dataset. This study 
also investigated the performance CAD and CV event pre-
diction system using fivefold and tenfold cross-validation 
protocols (supplementary material, section S2). The offline 
model uses 24 risk predictors from the training dataset (i.e. 
n = 458 samples) along with the binary endpoint (see Section 
Coronary Artery Evaluation using Angiography as a Gold 
Standard) to train the ML-based classifier. In this study, we 
used a random forest (RF) classifier to perform significant 
CAD prediction [36]. RF is an ensemble of several deci-
sion trees and follows a voting-based strategy to make the 
final prediction. A detailed description of the RF classifier 
is provided in section S3 of the supplementary material. 

Fig. 3   The architecture of an ML-based (AtheroEdge™ 3.0ML, AtheroPoint™, CA, USA) coronary artery disease prediction system. CUS, 
carotid ultrasound; LOO, leave-one-out cross-validation protocol
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The offline system trains the ML-based model by generat-
ing offline training coefficients. These offline training coef-
ficients were then used in the online model to transform 24 
“test predictors” derived from the “test dataset” into the pre-
dicted labels (significant or non-significant CAD). Note that 
the testing sample was unknown to the offline ML model and 
also was not part of the training dataset. The performance of 
the ML-based system was evaluated using area-under-the-
curve (AUC), sensitivity, specificity, and accuracy metrics 
against the endpoint. The endpoint was only used for the 
performance evaluation and not part of the “online test sys-
tem”. This is a unique feature of online ML-based systems 
that automatically predicts CAD labels from the risk predic-
tors, without any requirement of endpoint labels. Finally, 
we benchmarked the ML-based CAD prediction system 
against the derivation study taken from Mantella et al. [7] 
that provided the CAD prediction using univariate analy-
sis with IPN as an independent risk predictor. Furthermore, 
we also compared the ML-based CAD prediction system 
with the standard-of-care pooled cohort risk (PCR) equa-
tion developed by the American College of Cardiology and 
American Heart Association that provide atherosclerotic 
CVD (ASCVD) risk assessment [37]. ASCVD is typically 
adopted for 10-year risk computation, while LR and Athe-
roEdge™ 3.0ML were used to compute the 30-day survival 
analysis. Note that ASCVD lacks performance due to a lack 
of carotid plaque or coronary information. Unlike ASCVD, 
the ML system learns from the cohort using gold standard 
and carotid covariates, providing the trained models, which 
can then be used for predicting the risk label on the test data 
sets. A detailed description of the ASCVD risk calculator is 
provided in section S4 and section S5 of the supplementary 
material.

Statistical analysis

Statistical Analysis was performed using IBM’s SPSS (ver-
sion 23) software. Independent sample t-test and Chi-square 
(χ2) were used to investigate the association between con-
tinuous and categorical risk predictors with the endpoint. 
All the statistical tests were two-tailed with a level of sig-
nificance of < 0.05. Continuous variables were expressed 
as mean ± standard deviation and categorical variables as 
percentages (see Table 1 baseline characteristics). Coronary 
angiography score-based binary endpoint indicating a status 
of significant CAD (≥ 50% stenosis) or non-significant CAD 
was used to train the ML-based algorithms.

Univariate and multivariate logistic regression was per-
formed and the odds ratios (ORs) with 95% confidence 
interval (CI) were computed to determine the risk predic-
tors significantly associated with the endpoint. ML-based 
CAD prediction system was evaluated against endpoint 
using AUC, sensitivity, specificity, and accuracy. The 

mathematical expressions for these metrics are provided 
in section S6 of the supplementary material. An extended 
version of the RF algorithm called—random survival forest 
(RSF), was used for survival analysis [38]. CV event pre-
diction for the 30 days follow-up was performed using ML-
based survival analysis with the RSF algorithm further com-
pared against the Cox proportional hazard model (CPHM). 
The performance of the survival analysis was evaluated 
using the concordance index (c-index). The importance 
of risk predictors in CV event prediction was determined 
using RSF. Survival and hazard curves for 30-day follow-
up for all patients were plotted using the RSF. Inter- and 
intra-observer reliability analysis was performed using the 
intra-class correlation coefficient (ICC) in a subset of 30 
participants. The ML-based system for CAD prediction and 
ML-based survival analysis (called AtheroEdge™ 3.0ML) 
was developed by AtheroPoint™, Roseville, CA, the USA 
using Scikit-learn software, [39] which has python-based 
open-source libraries [40].

Results

Baseline characteristics

The derivation study screened 1211 participants referred for 
coronary angiography. Participants were excluded in three 
phases (Fig. 4): (i) in the first phase, 610 participants met 
the inclusion and exclusion criteria. Thus, the remaining 
601 participants were excluded from the study. In the sec-
ond phase, 110 participants were excluded mainly because 
of the withdrawn of consent, cancellation of the coronary 
angiogram, and no IV access. Thus, the scanning was per-
formed only on 500 participants. After image analysis, 41 
participants were excluded due to the absence of carotid 
artery plaque. Overall, 459 participants were selected for this 
study. There was a significant difference in age (63.71 ± 10.5 
vs. 65.97 ± 10.0 years, p = 0.022), sex (32.5% vs. 67.5%, 
p < 0.0001), hyperlipidemia (32.3% vs. 67.7%, p = 0.003), 
diabetes mellitus (29.7% vs. 70.3%, p = 0.048), and smoking 
history (34.3% vs. 65.7%, p = 0.02) for participants with non-
significant and significant CAD as well as number of partici-
pants taking medications such as statins (33.2% vs. 66.8%, 
p = 0.023), beta-blockers (30.8% vs. 69.2%, p = 0.002), and 
anti-platelet/anti-coagulants (33.6% vs. 66.4%, p = 0.001). 
Reasons for referral such as myocardial infarction and posi-
tive stress test were also significantly associated with CAD 
(p < 0.05). There was also a significant difference between 
carotid ultrasound plaque-based characteristics such as cIMT 
(0.72 ± 0.1 vs. 0.78 ± 0.2 mm, p < 0.0001), MPH (2.43 ± 1.0 
vs. 3.11 ± 1.3  mm, p < 0.0001), TPA (38.87 ± 37.3 vs. 
59.74 ± 45.9 mm2, p < 0.0001), and IPN (0.45 ± 0.6 vs. 
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1.76 ± 0.4, p < 0.0001) for non-significant and significant 
CAD groups.

Univariate and multivariate analysis

Univariate logistic regression (Table 2) indicated a sig-
nificant association between CAD and age (OR = 1.02, 
p < 0.023), male sex (OR = 2.24, p < 0.0001), hyperlipi-
demia (OR = 1.81, p = 0.003), diabetes mellitus (OR = 1.63, 
p = 0.037), smoking history (OR = 1.63, p = 0.016), use of 
statins (OR = 1.58, p = 0.018), beta-blockers (OR = 1.84, 
p = 0.002), and anti-platelet/anti-coagulants (OR = 2.04, 
p = 0.001), and plaque characteristics such as cIMT 
(OR = 1.90, p < 0.0001), MPH (OR = 2.32, p < 0.0001), TPA 
(1.92, p < 0.0001), and IPN (OR = 2.41, p < 0.0001). Multi-
variate analysis was performed in two phases by considering 

significant risk predictors from univariate analysis (i) by 
excluding the plaque characteristics and (ii) including plaque 
characteristics one at a time. All carotid ultrasound plaque 
characteristics reported a significant association with CAD 
after adjusting with the conventional parameters (p < 0.05). 
However, in univariate and multivariate analysis using the 
Cox-proportional hazard model (Table S4 in supplemen-
tary material), CV events were significantly associated with 
IPN (hazard ratio = 1.27, p < 0.0001) and cIMT (hazard 
ratio = 1.40, p < 0.0001).

ML‑based CAD prediction and survival analysis

In the ML-based CAD prediction (Fig. 5), the RF classifier 
reported improvement in AUC by ~ 3% over the previously 
published study [7] with univariate logistic regression 

Table 1   Baseline characteristics for the study participants based on significant and non-significant CAD

ǂ Risk predictor is significant with p < 0.05
# Significant CAD: stenosis ≥ 50%
CVD cardiovascular disease; CAD coronary artery disease; BMI body mass index; eGFR estimated glomerular filtration rate; ACE Angioten-
sin-converting enzyme; ARB Angiotensin Receptor Blockers; MI myocardial infarction; cIMT carotid intima-media thickness; MPH maximum 
plaque height; and IPN intra-plaque neovascularization

SN Parameters Overall
(n = 459)

Non-significant CAD
(n = 175)

Significant CAD#

(n = 284)
p-value

R1 Age, (years)ǂ 65.11 ± 10.3 63.71 ± 10.5 65.97 ± 10.0 0.022
R2 Male Sex, n (%)ǂ 326 (71.0%) 106 (60.6%) 220 (77.5%)  < 0.0001
R3 BMI (kg/m2) 30.10 ± 5.9 30.44 ± 6.2 29.89 ± 5.8 0.334
R4 eGFR (ml/min/1.73 m2) 78.34 ± 18.2 80.01 ± 17.6 77.31 ± 18.4 0.122
R5 Hypertension, n (%) 317 (69.1%) 113 (64.6%) 204 (71.8%) 0.126
R6 Hyperlipidemia, n (%)ǂ 269 (58.6%) 87 (49.7%) 182 (64.1%) 0.003
R7 Diabetes Mellitus, n (%)ǂ 111 (24.2%) 33 (18.9%) 78 (27.5%) 0.048
R8 Smoking Hx, n (%)ǂ 309 (67.3%) 106 (60.6%) 203 (71.5%) 0.02
R9 Family Hx of CVD, n (%) 297 (64.7%) 108 (61.7%) 189 (66.5%) 0.341
Medication use
 R10 Statins, n (%)ǂ 250 (54.5%) 83 (47.4%) 167 (58.8%) 0.023
 R11 ACE Inhibitors, n (%) 179 (39.0%) 66 (37.7%) 113 (39.8%) 0.731
 R12 ARBs Angiotensis, n (%) 44 (9.6%) 12 (6.9%) 32 (11.3%) 0.163
 R13 Beta-Blockers, n (%)ǂ 221 (48.1%) 68 (38.9%) 153 (53.9%) 0.002
 R14 Calcium Channel Blockers, n (%) 87 (19.0%) 34 (19.4%) 53 (18.7%) 0.935
 R15 Anti-Platelet/Anti-Coagulants, n (%)ǂ 339 (73.9%) 114 (65.1%) 225 (79.2%) 0.001
 R16 Diuretics, n (%) 92 (20.0%) 38 (21.7%) 54 (19%) 0.561

Referral parameters
 R17 Referral: MI, n (%)ǂ 154 (33.6%) 12 (6.9%) 142 (50%)  < 0.0001
 R18 Referral: Chest Pain, n (%) 214 (46.6%) 84 (48%) 130 (45.8%) 0.713
 R19 Referral: + Stress Test, n (%)ǂ 145 (31.6%) 71 (40.6%) 74 (26.1%) 0.002
 R20 Referral: Shortness of Breath, n (%) 121 (26.4%) 54 (30.9%) 67 (23.6%) 0.108

Carotid ultrasound plaque characteristics
 R21 cIMT (mm) ǂ 0.76 ± 0.2 0.72 ± 0.1 0.78 ± 0.2  < 0.0001
 R22 MPH (mm) ǂ 2.85 ± 1.2 2.43 ± 1.0 3.11 ± 1.3  < 0.0001
 R23 TPA (mm2) ǂ 51.78 ± 44.0 38.87 ± 37.3 59.74 ± 45.9  < 0.0001
 R24 IPN Scoreǂ 1.26 ± 0.8 0.45 ± 0.6 1.76 ± 0.4  < 0.0001
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with IPN as a single independent risk predictor (0.97 vs. 
0.94, p = 0.003). Considering IPN alone, the RF classi-
fier demonstrated highly similar results to the univariate 
logistic regression with IPN (0.92 vs. 0.94, p < 0.0001). 
However, when compared against the current ASCVD 
calculator, the ML-based algorithm reported significantly 
superior performance indicated by an improvement in the 
AUC by ~ 54% (0.97 vs. 0.63, p < 0.0001). These results 
suggest that the ML-based algorithm provides a bet-
ter prediction of CAD and, therefore, the CVD over the 
conventional statistically-derived algorithms. This trend 
resembles the previous studies where ML-based strategies 
showed better performance compared to conventional risk 
calculators with different gold standard paradigms [15, 
16, 41]. Furthermore, the ML-based RSF algorithm used 
for survival analysis and time-to-event prediction dem-
onstrated an improvement in the C-index by 17.8% over 
the conventional Cox proportional hazard model (0.86 vs. 
0.73). Figure 6 shows the survival and cumulative hazard 
curves for the study participants. Figure 7 shows the top 
20 risk predictors that had the greatest ability to predict 
CV events. IPN was the highest-ranked metric for CV risk 
prediction, indicating its importance.

Discussion

This is a unique study that combined the information from 
conventional clinical risk predictors and carotid ultrasound 
plaque characteristics to predict significant angiographic 
CAD and CV events using ML methods compared head-to-
head with conventional statistical methods. An improvement 
of ~ 3% in AUC over the univariate analysis and of ~ 17.8% 
in C-index over the cox proportional hazard model showed 
the superiority of ML-based algorithms for predicting CAD 
and CV events. This study retains the findings of previous 
studies that carotid ultrasound image-based plaque charac-
teristics are independent and significant predictors of CAD 
[7, 21, 42] while suggesting analysis by ML methods should 
be considered. The ML-based survival analysis using RSF 
indicated IPN as the most important risk predictor in CV 
events (Fig. 7). IPN measured from CEUS showed good 
intra-observer reliability with an ICC of 0.88 and good inter-
observer reliability with an ICC of 0.87 (section S8 of the 
supplementary material).

From the baseline characteristics (discussed in Section 
Baseline characteristics), it is clear that in this selected 
cohort, elderly patients are having more risk of developing 
significant CAD. The risk of developing CAD at baseline 

Fig. 4   Flow chart showing participants meeting inclusion and exclusion criteria. IV, intravenous



	 The International Journal of Cardiovascular Imaging

1 3

was also high in participants with having risk predictors such 
as hyperlipidemia, diabetes mellitus, or smoking history. 
At baseline (Table 1), patients with significant CAD also 
reportedly had high image-based phenotypes such as cIMT, 

MPH, TPA, and IPN. These observations were verified using 
the univariate and multivariate analysis in Section Univari-
ate and Multivariate Analysis. Higher odds ratios (with 
p-value < 0.000) for IPN followed by MPH and other carotid 
ultrasound image-phenotypes showed a significant associa-
tion between the increase in these image-based phenotypes 
with the CAD. Thus, high-risk patients with elevated val-
ues of risk predictors are more likely to experience cardio-
vascular events in the near future. This study did not track 
the participants for the longer follow-up duration, but the 
30-days of follow-up had indicated the high chances of car-
diovascular events in participants with the increase in IPN 
and cIMT (Section Univariate and Multivariate Analysis).

Study limitations

In this study, all participants were collected from the car-
diac catheterization lab, and, therefore, they were mostly 
symptomatic, having an inherently higher baseline risk 
profile. Even though ML was able to automatically clas-
sify and predict the CVD risk in the current pool of higher 
baseline risk profiles using the current set of CVD predic-
tors, this application could more evolve, demonstrating its 

Table 2   Univariate and 
multivariate binomial logistic 
regression to investigate risk 
predictors associated with CAD

ǂ Significant predictor in univariate and multivariate analysis
CVD, cardiovascular disease, CAD, coronary artery disease; OR, odds ratio; BMI, body mass index; 
eGFR, estimated glomerular filtration rate; ACE, Angiotensin-converting enzyme; ARB, Angiotensin 
Receptor Blockers; cIMT, carotid intima-media thickness; MPH, maximum plaque height; IPN, intra-
plaque neovascularization; IQR, interquartile range

SN Variable Univariate Analysis Multivariate Analysis

OR 95% CI p-value OR 95% CI p-value

1 Ageǂ 1.02 1.00–1.04 0.023 1.03 1.01–1.05 0.005
2 Sexǂ 2.24 1.48–3.38  < 0.0001 2.11 1.36–3.27 0.001
3 BMI 0.99 0.95–1.02 0.334 – – –
4 eGFR 0.99 0.98–1.00 0.123 – – –
5 Hypertension 1.40 0.94–2.10 0.103 – – –
6 Hyperlipidemia 1.81 1.23–2.65 0.003 1.42 0.90–2.25 0.14
7 Diabetes Mellitus 1.63 1.03–2.58 0.037 1.43 0.86–2.36 0.17
8 Smoking Historyǂ 1.63 1.10–2.43 0.016 1.54 1.00–2.35 0.049
9 Family History of CVD 1.23 0.83–1.83 0.293 – – –
10 Statins 1.58 1.08–2.31 0.018 0.98 0.62–1.56 0.94
11 ACE Inhibitors 1.09 0.74–1.61 0.658 – – –
12 ARBs Angiotensis 1.73 0.86–3.45 0.123 – – –
13 Beta-Blockersǂ 1.84 1.25–2.70 0.002 1.57 1.03–2.38 0.036
14 Calcium Channel Blockers 0.95 0.59–1.54 0.839 – – –
15 Anti-Platelet/Anti-Coagulantsǂ 2.04 1.34–3.12 0.001 1.61 1.02–2.54 0.042
16 Diuretics 0.85 0.53–1.35 0.483 – – –
17 cIMT (per IQR)ǂ 1.90 1.42–2.55  < 0.0001 1.59 1.16–2.17 0.004
18 MPH (per IQR)ǂ 2.32 1.72–3.14  < 0.0001 1.85 1.34–2.57  < 0.0001
19 TPA (per IQR)ǂ 1.92 1.47–2.51  < 0.0001 1.5 1.12–2.00 0.007
20 IPN Score (per score 0.25)ǂ 2.41 2.08–2.79  < 0.0001 2.43 2.09–2.83  < 0.0001

Fig. 5   Comparison between machine learning-based CAD prediction 
system against the conventional algorithms. TP, total predictors
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power to effectively predict CVD, if the data pool were low 
to moderately symptomatic participants. In our previous 
studies, which used the surrogate biomarkers of CAD as the 
endpoint for designing the ML system, we had reported the 
superiority of ML-based systems over the other conventional 
algorithms [13, 15, 16]. Although, the previous studies have 
successfully attempted the role of ML, [43, 44] we intend 
to collect participants who were not referred for coronary 
angiography and fall under low-to-moderate risk category to 
validate the superiority of the proposed ML-based system. 
In order to generalize this study results, it is important to 
collect a large database with cohorts of diverse ethnicities. 
In this study, since the blood cholesterol values were absent, 
the CVD risk prediction using the ASCVD calculator was 
performed using conservative values for total cholesterol 

and high-density lipoprotein cholesterol (see supplemen-
tary material). However, our previous studies with blood 
cholesterol readings have also demonstrated the superiority 
of the ML-based system over the conventional cardiovascu-
lar risk calculators [13, 15, 16]. Due to lack of access to the 
image database, variability studies on measurements could 
not be conducted and readings provided by the cardiologists 
were taken as a face value. Note that authors have conducted 
variability analysis, reproducibility analysis in their previous 
studies successfully [45–49] and intend to use that strat-
egy again on this image data in the future. Another limita-
tion of our study is the short follow-up time of 30 days. We 
intend to conduct future studies with longitudinal follow-up 
to predict CAD and CV events using ML algorithms. An 
additional extension for this study could be the inclusion of 

Fig. 6   ML-based Survival analysis plots for study participants. (A) Survival curves and (B) Cumulative hazard curves for 459 participants. Red 
colored curves indicate the participants, who experienced events in the 30 days of follow-up period

Fig. 7   Machine learning-based 
importance of risk predictors 
in the 30-day cardiovascular 
event prediction. IPN intra-
plaque neovascularization, MI 
myocardial infarction, eGFR 
estimated glomerular filtration 
rate, cIMT carotid intima-media 
thickness, TPA total plaque area, 
MPH maximum plaque height, 
BMI body mass index, CVD 
cardiovascular disease
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grayscale image-based features into the ML algorithm. Pre-
vious studies have demonstrated an improvement in CV risk 
assessment using the grayscale features [29, 50, 51]. There-
fore, the inclusion of grayscale features alongside related 
plaque characteristics such as pixel distribution analysis or 
3D ultrasound features can further provide improvement in 
CAD and CV event prediction. However, all of these addi-
tional features would mean a heavy burden of data handling 
required, therefore the ML-based framework we have devel-
oped herein is the first requirement for developing an intel-
ligent feature analysis system attuned to CV risk prediction 
using Deep Learning [26, 52, 53].

Conclusion

Machine learning-based algorithms (AtheroEdge™ 3.0ML, 
AtheroPoint™, Roseville, CA, USA) applied to carotid ultra-
sound features, such as a combination of image phenotypes 
and intra-plaque neovascularization, can provide better CAD 
prediction compared to conventional statistically-derived 
approaches. ML-based survival analysis is superior to the 
conventional Cox proportional hazard models for CV event 
prediction.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10554-​021-​02294-0.
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