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Purpose of review

Obese individuals have impaired respiratory function relative to their normal-weight

counterparts. Despite these negative effects, obesity is paradoxically associated with

better survival in individuals with chronic obstructive pulmonary disease (COPD). The

purpose of this review is to describe this ‘obesity paradox’, to discuss the effects of

obesity on respiratory function, and to speculate as to whether obesity-related

alterations in respiratory mechanics can influence the natural history of COPD.

Recent findings

Given the known negative effects of obesity on respiratory physiology, it is reasonable to

predict that obese COPD patients would be more likely to experience greater dyspnea

and exercise intolerance relative to COPD patients of normal weight. However, recent

evidence suggests that obese COPD patients have similar or better dyspnea scores

during exercise and do not have diminished exercise capacity. These observations may

be attributable to the fact that obese COPD patients have reduced operating lung

volumes and higher inspiratory capacity to total lung capacity ratios than their lean

COPD counterparts.

Summary

Obese patients with COPD do not appear to be at a disadvantage during exercise

relative to lean COPD patients. Obesity may be associated with improved survival in

COPD but specific mechanisms for this paradox remain to be elucidated.
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Introduction

Obesity is a global problem that has been increasing in

epidemic proportions in both adults and children [1] and

has recently been declared a disease according to the

Obesity Society [2]. Obesity is commonly classified as a

BMI of 30 kg/m2 or more. Based on this definition, the

prevalence of obesity in adults is greater than 30% in the

United States [3]. It is well established that obesity is

associated with a number of comorbidities including

hypertension, type II diabetes mellitus, dyslipidemia,

and certain types of cancer [4��], and is associated with

increased mortality rate and reduced longevity [5].

Obesity is also known to have an important impact on

the respiratory system. For example, obesity can have

deleterious effects on pulmonary function, respiratory

mechanics, pulmonary gas exchange, the control of

breathing, respiratory muscle performance, and exercise

capacity, and has been linked to a range of respiratory

conditions such as chronic obstructive pulmonary disease

(COPD), obstructive sleep apnea, asthma, pulmonary

embolic disease, and aspiration pneumonia [6]. Obesity

may also be related to the release of pro-inflammatory

cytokines that contribute to systemic inflammation in
opyright © Lippincott Williams & Wilkins. Unautho
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COPD and asthma [7�]. The purpose of this review is

three-fold. First, to briefly describe the concept of the

‘obesity paradox’ as it relates to the respiratory system.

Second, to describe the effects of obesity on respiratory

physiology at rest and during exercise in individuals with

and without COPD. Finally, to speculate as to whether

obesity-related alterations in respiratory mechanics can

influence the natural history of this disease.
The obesity paradox
It is widely accepted that obesity in the general popu-

lation is associated with increased mortality and greater

disease risk. However, in those who have experienced

major illness or chronic disease, it appears that obesity is

paradoxically associated with improved survival. This

‘obesity paradox’ has been demonstrated in a number

of cardiovascular conditions such as hypertension, heart

failure, coronary heart disease, and peripheral arterial

disease, and other populations such as individuals with

chronic kidney disease, rheumatoid arthritis, AIDS, and

geriatric populations [4��,8]. Several studies have also

demonstrated that a low BMI is associated with adverse

prognosis in patients with COPD [9–11]. Landbo et al.
rized reproduction of this article is prohibited.
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Figure 1 Exponential regressions for functional residual

capacity and expiratory reserve volume versus BMI in adults

with normal airway function
[10] found a significant effect of BMI on all-cause

mortality in patients with severe COPD, with mortality

being lowest in the obese patients and highest in those

with the smallest BMI. However, this observation did not

occur in patients with milder COPD, suggesting that

obesity may exert differing effects depending on disease

severity. This study, coupled with the work of others

[9,11,12], demonstrated that obesity may be protective in

patients with advanced COPD. Interestingly, this para-

dox may even occur in the absence of preexisting chronic

respiratory illness. For example, Jee et al. [13] examined

the association between BMI and the risk of death in over

1.2 million Koreans (without preexisting disease prior to

study enrolment) and found that the risk of death from

respiratory causes progressively decreased with increas-

ing BMI, whereas risk of death from cancer and athero-

sclerotic cardiovascular causes increased with increasing

BMI. The mechanisms underlying the above-mentioned

findings on the obesity paradox remain unresolved. Why

does obesity paradoxically improve survival in patients

with COPD and why is a higher BMI associated with

fewer respiratory-related deaths in those without pre-

existing respiratory illness? The remainder of this review

will highlight the effects of obesity on respiratory func-

tion and we will then cautiously speculate what could be

driving this paradox.
The horizontal solid lines for functional residual capacity (FRC) are the
average upper limit of normal (ULN) and lower limit of normal (LLN) for
men and women. ERV, expiratory reserve volume. Reproduced with
permission from [22].
Resting physiological changes associated
with obesity
The mechanical derangements of simple obesity and its

effects on respiratory physiology are well established and

have recently been reviewed by Salome et al. [14��].

Briefly, these mechanical derangements predispose

obese individuals to having reduced respiratory system

compliance with increased elastic loading of the inspira-

tory muscles [15–18], increased work and oxygen cost of

breathing [19–21], reduced relaxation volume of the

static respiratory system [15,22], and increased respirat-

ory resistance [23]. Recent studies have shown in the

supine position that obese individuals have measurable

intrinsic positive end-expiratory pressure [24,25�]. Dis-

ruption of normal pulmonary gas exchange also occurs in

obesity and is manifested by increased regional venti-

lation–perfusion mismatching (due to microatelectasis

and airway closure). Reduced resting arterial partial pres-

sure of oxygen ( pO2) and increased alveolar-to-arterial pO2

difference have been identified in subsets of individuals

with morbid obesity [26].

Pulmonary function test abnormalities in eucapnic

obesity have been well documented. Expiratory reserve

volume (ERV) and end-expiratory lung volume (EELV)

(or functional residual capacity) have been shown to

decrease exponentially with increasing BMI [22] and

represent one of the most consistent and significant
opyright © Lippincott Williams & Wilkins. Unauth
effects of obesity on pulmonary function (Fig. 1). Corre-

sponding increases in resting inspiratory capacity and the

inspiratory capacity-to-total lung capacity (TLC) ratio

(inspiratory capacity/TLC) have recently been reported

in association with obesity [27��]. There is some evidence

to suggest that increasing body weight is associated with

modest reductions in TLC [22,28], which may be related

to reduced thoracic expansion [29�]. There is little or no

change in vital capacity and residual volume. There are

increases in pulmonary resistance with little/no change in

bronchial reactivity [30,31�]. The forced expired volume

in 1 s to forced vital capacity ratio (FEV1/FVC) is largely
orized reproduction of this article is prohibited.
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Figure 2 Tidal flow–volume loops at rest, ventilatory threshold,

and peak exercise plotted within the respective maximal flow–

volume loops in typical obese and normal-weight women

8Flow (l/s) Obese female Lean female
preserved in obesity [32,33]. Effects on static inspiratory

and expiratory muscle strength are variable and incon-

sistent [23,34]. Diffusing capacity of the lung for carbon

monoxide is preserved [35] and transfer factor reflecting

the relatively decreased alveolar volume is increased.
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The lean participant increased tidal volume by encroaching on the
inspiratory reserve volume with little change in end-expiratory lung
volume. In contrast, the obese female started with significant tidal
expiratory flow limitation at rest and experienced a large increase in
dynamic end-expiratory lung volume (EELV) from rest to peak exercise.
VTh, ventilatory threshold. Reproduced with permission from [19].
Physiological changes during exercise in
obesity
Oxygen uptake and carbon dioxide production (in absolute

terms) are consistently higher at rest and during both

weight-bearing and weight-supported exercise in obese

compared with normal-weight individuals [19,21,36–42].

The increased metabolic requirements in obesity are

related to increases in the energetic cost of moving heavier

limbs during locomotion, reduced mechanical efficiency of

the peripheral muscles, and increased work and O2 cost of

breathing [15,16,21,36,38,40–45].

Altered metabolic loading during exercise in obese indi-

viduals stimulates an increase in minute ventilation and

therefore respiratory muscle contractile effort at any

given submaximal work rate during exercise compared

with lean controls [19,36,38,46]. Breathing pattern is

relatively more rapid and shallow compared with lean

individuals reflecting the increased mechanical restric-

tion; this pattern minimizes increases in the elastic work

and oxygen cost of breathing and optimizes breathing

comfort [19,37,38,47]. Despite the shallow breathing

pattern and increased oxygen cost of breathing, pulmon-

ary gas exchange and arterial blood gas/acid–base status

are relatively well preserved or actually improve during

exercise in obesity [44,48].
Alterations in dynamic respiratory mechanics
and effects on respiratory sensation
Reductions in resting ERV and EELV force obese

patients to breathe close to residual volume where there

is an increased propensity to develop expiratory flow

limitation and an inability to decrease EELV with exer-

cise compared with healthy controls [20,39,49,50]

(Fig. 2). In some obese individuals, increased air-trapping

(or dynamic lung hyperinflation) can occur as ventilation

increases during activity. In this way, obese patients may

actually pseudo-normalize their EELV allowing tidal

volume to become positioned on a more compliant por-

tion of the (predicted) pressure–volume curve of the

respiratory system. Ofir et al. [19] reported that breath-

lessness for a given ventilation or oxygen consumption

was essentially superimposed between groups of obese

and normal-weight women. These findings were sub-

sequently confirmed by Romagnoli et al. [46] and collec-

tively suggest that the increased perception of exertional

breathlessness in obesity reflects the normal awareness of

increased ventilation and respiratory effort that accom-
opyright © Lippincott Williams & Wilkins. Unautho
panies the increased central (reflex) ventilatory drive.

Respiratory mechanical/muscular factors, per se, appear

not to contribute importantly to exertional breathlessness

in obesity. Ofir et al. [19] argued that the increased resting

inspiratory capacity in obesity and the dynamic increase

in EELV during exercise optimized airway function and

allowed the increased tidal volume expansion during

exercise without further compromising respiratory

muscle function.
The combined effects of chronic obstructive
pulmonary disease and obesity on respiratory
physiology
Although both COPD and obesity are common health

problems that have been studied extensively in isolation,

the impact of their combination on respiratory pathophy-

siology and symptom intensity is unknown. It has been

reported that a relatively high percentage of COPD

patients are also obese, with some reports showing a

prevalence of 18% [51] and others showing a prevalence

of 54% [52]. The pathophysiological hallmarks of COPD

are expiratory flow limitation and lung hyperinflation

[53,54]. Preliminary studies indicate that the presence

of airway obstruction does not alter the relationship

between increasing BMI and lung volumes (ERV and

functional residual capacity) seen in health [27��,31�]. In

other words, these lung volume components also

decrease exponentially as BMI increases in patients with
rized reproduction of this article is prohibited.
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COPD. Obese COPD patients consistently demonstrate

less lung hyperinflation and have a larger inspiratory

capacity and inspiratory capacity/TLC ratio than their

lean counterparts matched for FEV1 [27��]. It is concei-

vable that, collectively, these physiological alterations

convey potential advantages during physical activity.
Impact of obesity on dyspnea and exercise
tolerance in chronic obstructive pulmonary
disease
In normal-weight patients with COPD (compared with

health), the increased ventilatory demand of exercise

(amplified by ventilation–perfusion abnormalities)

results in dynamic pulmonary hyperinflation, which pre-

cipitates mechanical limitation and intolerable dyspnea

at relatively low ventilations. In COPD, the severity of

exertional dyspnea and exercise intolerance is closely

linked to the magnitude of reduction in the resting

inspiratory capacity and its further rate of decline during

exercise as a result of dynamic hyperinflation [54].

It is reasonable to anticipate that when the derangements

of dynamic ventilatory mechanics of COPD are coupled

with the increased metabolic demands and mass loading

effects of obesity, dyspnea and exercise intolerance

would increase [55,56]. Ora et al. [27��] postulated that
opyright © Lippincott Williams & Wilkins. Unauth

Figure 3 Static and rest to peak exercise lung volumes
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in obese COPD patients, the relatively reduced EELV at

rest and during exercise would partly counterbalance

the negative sensory and mechanical consequences of

severe lung hyperinflation present in FEV1-matched

nonobese patients with COPD. To test this hypothesis,

these investigators compared dyspnea intensity ratings

and ventilatory responses (breathing pattern and operat-

ing lung volumes) during symptom-limited incremental

cycle exercise in well characterized groups of 18 obese

(BMI¼ 35� 4 kg/m2; mean�SD) and 18 normal-weight

(BMI¼ 22� 2 kg/m2) patients with moderate to severe

COPD [27��]. The obese COPD group had a significantly

smaller resting EELV, ERV, and TLC (expressed as %

predicted) and the inspiratory capacity/TLC ratio was

significantly larger compared with normal-weight COPD

(Fig. 3). The dynamic EELV was lower (expressed as %

predicted TLC) at rest and throughout exercise in obese

compared with normal-weight COPD (Fig. 3). Never-

theless, the rate of air-trapping or dynamic lung hyperin-

flation during exercise was similar in both groups. Obese

COPD participants also had a significantly greater venti-

lation and oxygen uptake (expressed in l/min) at rest

and throughout exercise compared with normal-weight

COPD controls. Despite these effects, the combination

of obesity and COPD was not associated with diminished

exercise capacity or greater dyspnea at any work rate

compared with normal-weight COPD individuals. In fact,
orized reproduction of this article is prohibited.
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Figure 4 Relationship between dyspnea and minute ventilation

in obese and normal-weight patients with chronic obstructive

pulmonary disease
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symptom-limited peak oxygen uptake (standardized as a

percentage of the predicted normal value corrected for

ideal body weight) was greater in the obese versus the

nonobese COPD group. Moreover, in obese COPD indi-

viduals, dyspnea intensity ratings were reduced at any

given ventilation or oxygen uptake compared with nor-

mal-weight COPD individuals (Fig. 4). A strong corre-

lation (r¼ 0.67, P< 0.00001) was found between ratings

of dyspnea intensity at a standardized ventilation and

resting and dynamic EELV/TLC ratio in the whole

group. The authors reasoned that the relatively reduced

EELV at rest and throughout exercise (and the attendant

advantages with respect to diaphragmatic function)

were the most likely contributory factors to the reduced

dyspnea intensity in obese COPD individuals. More

recently, Laviolette et al. [57��] extended these obser-

vations in a larger population of COPD patients with a

wide range of BMI values during constant load cycling.

Again in that study obese patients with COPD were not

at a disadvantage relative to their normal weight COPD

counterparts and had a higher peak oxygen uptake. It is

important to point out, however, that these findings

occurred during weight-supported cycle exercise and

may be different during weight-bearing exercise (i.e.

treadmill) where the increased metabolic demands of

obesity would be further exaggerated.
Static lung hyperinflation and survival in
chronic obstructive pulmonary disease: the
possible influence of obesity
Is it conceivable that the relatively reduced lung hyper-

inflation (and increased inspiratory capacity/TLC ratio)
opyright © Lippincott Williams & Wilkins. Unautho
in overweight patients with COPD may carry some prog-

nostic advantages? Indices of resting static lung hyperin-

flation such as inspiratory capacity and the inspiratory

capacity/TLC ratio have emerged as independent predic-

tors of increased respiratory and all-cause mortality

in patients with COPD [58,59]. Thus, an inspiratory

capacity/TLC ratio less than 25% was associated with very

poor survival. However, the precise mechanisms under-

lying the association between lung hyperinflation and

death from cardiovascular causes are unknown. It is note-

worthy that improved respiratory system mechanics

following lung volume reduction surgery was associated

with improved survival in selected patients with advanced

emphysema [60].

A reduced inspiratory capacity (expressed as % predicted

or as a fraction of TLC) correlated well with poor peak

symptom-limited oxygen uptake during incremental

cycle exercise [61,62] – another independent predictor

of poor survival in COPD [63]. The corollary is also true –

that small improvements in inspiratory capacity following

pharmacological or surgical lung volume reduction have

been associated with improved exercise performance in

COPD [64–67]. Thus, it is not unreasonable to postulate

that obesity-associated lung volume reduction with con-

sistently increased inspiratory capacity compared with

lean patients with COPD may have some similar long-

term benefits.
Conclusion
In western countries, ‘the obese COPD patient’ has

emerged as an increasingly common clinical phenotype.

It is clear that being underweight or having a low fat-free

mass is associated with poor survival in COPD. By con-

trast, obesity is a recognized risk factor for insulin resist-

ance, obstructive sleep apnea, and cardiovascular disease.

Moreover, excessive abdominal fat may directly release

pro-inflammatory cytokines that contribute to a systemic

inflammatory syndrome in COPD [7�,68]. It is surprising,

therefore, that an increased BMI appears to be associated

with improved survival at least in patients with more

advanced COPD. The pathophysiological basis for this

apparent obesity paradox is unknown.

Is it possible that obesity-induced modification of the

natural history of deteriorating respiratory system

mechanics is sufficient to counterbalance the known

deleterious systemic effects of obesity? A fundamental

question is whether the reported benefits of an increased

BMI in this population are derived from an increased fat-

free skeletal muscle mass, from the effects of excessive

adipose tissue on the mechanics of the respiratory system,

or some combination of both. Prospective longitudinal

studies that examine the interaction of changes in body

composition and the temporal progression of pulmonary
rized reproduction of this article is prohibited.
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function decline (after controlling for the relevant comor-

bidities) are needed to better understand this intriguing

relationship between increased BMI and survival in

COPD populations.
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